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Limited and Illimited Linear Difference Equations of the 
Second Order with Periodic Coefficients. 

BY TOMLINSON FORT. 

In this paper, I show how a method developed by A. Liapounoff * for the 
linear differential equation of the second order can be extended to the difference 
equation in which the independent variable is restricted to integral values. 
Certain portions of Liapounoff's work can be applied to the difference equation, 
with changes which are in no wise fundamental. I shall consequently state 
some results without proof, the proofs being readily supplied from the paper 
of Liapounoff. The fundamental theorem of Liapounoff, the proof of which, 
as given by him, is exceedingly difficult and long, covering some sixteen pages, 
when stated for the difference equation admits a proof both short and simple. 
This simplicity does not, however, extend throughout the theory, as the for- 
inulas to be used in the calculations are usually more difficult to obtain and 
somewhat inore complicated for the difference than for the differential equation 

? 1. A Necessary and Sufficient Condition that the Equationt be Limited. 

Given 
y(i + 2) + M(i)y(i + 1) + y(i) =O, (1) 

where the function M(i) is real and defined for all integral values of the argu- 
ment, and satisfies the relation M (i + () -M (i). 

Let Y, and Y2 be two linearly independent solutions. Then, as Yi (i + ) 
and Y2 (i + c) are also solutions, 

y (i+ () all1y,(i) + a12y2(i) (2) 
Y2(i+ ) a2lY1(i) +a22 Y2(i), 1 

where all, a12 , a2l and a22 are constants; and since the determinant 

Y,(i) Y,(i+1) 
Y y2 (i) y2(i+1) 

is a constant, 
a,, a12 -1 

a21 a22 

* Memoires de l'Acad4mie Imp6riale des Sciences de St. Petersbourg, 8e Se'rie, Tome 13, 1902. 
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Consequently, the characteristic equation* of (1), 

all -p a12 | 

a21 a22 p 

reduces to p2 - (a,, + a22) p + 1 = 0, which we write 
p2 -2Ap+1 =0. (3) 

From the first of equations (2), 

y1 (i + c) = 2 A y1 (i) + a12y2 (i) a22 Y1 (i) (4) 

Write equations (2) in the form 

y (i) =a,,y, (i j) + a22 (ico),1 (5) 
Y2 (i) = a2l Yl (i-Xa)+ a22 Y2 (-J 

Solve (5) for Y1 (i - c) and substitute in (4). We get 

y1 (i + ) + y1 (i -) =2 A y1 (i). 
But A, being a coefficient of the characteristic equation, is independent of the 
particular fundamental system of solutions chosen. Hence, when y is any 
solution of (1), 

y (i + a) + y (i-) 2 2Ay (i). (6) 
We call A the characteristic constant of the difference equation, (1). 

From (6), proceeding exactly as is done by Liapounoff in the case of the 
differential equation, we obtain the following theorem: 

THEOREM I. If A2> 1, all solutions of (1), not identically zero, are illim- 
ited.t If A2 <1, all solutions of (1) are limited. If A=1, there exists at least 
one solution, not identically zero, having the period c; all solutionis not having 
the period X are illimited. If A =- 1, there exists at least one solution, not 
identically zero, satisfying the relation y (i + )-y (i); all solutions not 
having the period 2 ca are illimited. 

? 2. The Finite Series, 1 -A + A2- .... + (1)wA,. 
The problem of the calculation of A next presents itself. 
Let f (i) and ?p(i) be the two solutions of (1) suchl that 

f(0) =1, Af(0) =0; 
(0) =?, Ap (0) =1. 

From (6), f (X) +f (-) = 2A. Moreover, A/P ())f (i+c)-AAf (U))P(i+W) 
is a linear combination of f (i+Uc) and cp(i+ (), two solutions of (1), and hence 

* The characteristic equation of (1) is the analogue of the characteristic equation of the differential 

equation, da,2 + m (a>) y =0, wlhere m (x) is periodic. Compare Floquet, Ann. Sci. de l'PEcole Normale 
Sup6rieure, 2e S6rie, XII, p. 47. 

t A solution of (1) is said to be limited if it remains finite as i becomes infinite, and to be illimited 
in the contrary case. 
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is itself a solution. Moreover, it and its first difference at 0 are equal respect- 
ively to f (0) and Af (O) ; hence 

f (t) d(Ca) f (i + C) -Af (cw) + (a+). (7) 
From (7), f (-c) = Ap (c), and hence 

2 A = f ()?+ AO () .(8) 
If c is small, the calculation of A from (8) is easy. We calculate f (2), 

f (3),.., f () successively from (1), then cp(2), cp(3) ..., c(a+1), and 
substitute in (8). 

If c is large, this process is tedious, and for very large values of a is 
prohibitive. In the following pages a process, analogous to that employed by 
'Liapounoff for the differential equation, is developed for the treatment of this 
case. We begin by writing the difference equation in the form 

A2 y () + p () ( + 1) = 0, (9) 

where p(i) replaces M(i) + 2. 
Treat f (i) and cp (i) by a method of successive approximations* similar 

to that employed in existence theorems for differential equations. Denote the 
successive terms in the two series by fo -ff, . - . .. (-1)n fn . . ... , and 

0- cp1 ....* (- 1)" p respectively. Adopting the convention 2 F (i) - 0, 
i=k 

k > g; whlen i >0 
p0 (i) =t 

i-1 i1-1 

p(I) -P 2 ) ('2 + ) 
i1=O i2=O 

it-1 il-I t2 i2 n-2 i2 n_-I 

Pn ( z 
.... . p (i2) p (i4) . -. P (.2n) (i2n + 1), (10) 

i1=O i2=0 i3=O i2n-1=0 i2n=o 

f0 (i) = 1 

2-1 2-1 i2 i2n. 2 22n-1-1( 

fn Pq>)i= (iO2) P ( i4) *fP (i220lL 
i1=10 i2=0 i,3=0 i2n_l1=0 i2?1 ? 

* Consider equation (9). Form successive approximnations for a solution, y, such that y (a) =-o, 
y (a+ 1) =-cl, where a is any integer, and co and cl arbitrary constants. Assumino yn-I as known, we 
determine yn from A'Y n (i)- P (i) yn-1 (O + 1), subject to the conditions yn (a)= co, Yn (a + 1) = c1. 
Choose yo= (i a) (ce-co) +co, and let Zn (i) =yn (i)- yn-1 (i) when n_> 1, zo (i) yo (i). Clearly, 
when n > 1 

A2zn () =-p () #n-1 (i+ 1) and zn (a) =zn (a+ 1) 0. (j) 

Adopting the convention I P (i) =0, k > g, we have, when n >1 and i_ a, 
i=k 

i-1 i-1 
2Sn (0) _- I P 0?() 2Sn-I O+ 1). (jj) 

i=a i=a 
From (jj) it is immediate that if Zn-1(i) = 0 when ?=a, a+l,...., i--i, zn(i) 0 when i=a, 

a + 1, ...., i. But z1 (a) =z1 (a + 1) =0. Hence Z2 (a)= Z2 (a + 1) = z(a + 2) =0, and in general 
zn (a) = Zn (a + 1) =.... = zn (a + n) = 0. Consequently, the series zo (i) + z1 (i) + Z2 (i) + .... has all 
its terms zero after the (i-a)-th, and hence converges. Moreover, it satisfies the difference equation 
and the conditions at a, and accordingly is the solution of the difference equation sought when i > a. 
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From (10), 
i-1 '2 8- 1 i2n-1-1 

pn, (q' - 2; - . * - Z P ('22) p ('64) * --P ('20n (112n + 1) 
i2=? i=0 4=0 i2On= ? 

i-1 h 22 - 1 2n-2-1 i2n-1 

2;I z - * - - ; 2; p ('.I) p (63) *- p ('62n-1)- (12) 
i= i=0 i3=0 2 n-k1O i2fn=O 

Let 2An- fn (c) + Apn ((a) Clearly, 

A 1 A1+A2- .... +( 1)wAw. (13) 
Consider 

CA 1 ij-1 i2 i3- 1 

f2 ((a) = z (2) 2 X (i) 
i1=0 i2=O i3=0 i4=0 

i-i 

Let Z p (i) P (i), thus defining P (i) ; and sum by parts, considering i2 
i=O 

as variable of summation. We get 
W-1 i1-1 

f2 (CO)) -2 2 (P (t1) P (i2) ) P ('2) 
i1=- i2=O 

Now apply similar summation by parts to f7 (a), considering successively, as 
variables 6f summiation, i2 9 . . . ., i2n'2. The above result is clearly general 
for any single summation, and we write 

Wt-1 il-1 *2-1 ....i2n-1-1 

fn ((v)) S ; ... . (P (il) P (M2) )(P ('2) P (i3))* -- 
*1=0 i2=0 i3=0 * 2n=O 

(P ('n-1) P (in) )P (in)* (14) 
Consider next 

w-1 i i2-1I i3 

'A2 (@) Z p (i1) >L p (i3) > 1. 
il =O i2=? is= O i-O 

Sum by parts, considering successively i1 and i8 as variables of summation. 
w-1 i*-1 

AA 2(X 2 ; (PX P (il) ) (P ('I) P (i2)) 
il=O i2-? 

In general, letting P (0) - Q, 
W-1 il-1 i2-1 in-l-I 

gPn ((;a) = v 2; S 2 .......... - (Q P (i1) ) (P ('II) P ('2) )* 
1=,0 i2=0 i3=0 i"=O 

(P(in-1) P('n) ) ( ) 
Combining (14) and (15), 

W-1 i?-1 i2-1 in-I-1 

2An 2 .... * ( (Q P +P(in)* (P(' ) P(2)) 
L=?O i2=0 i3= i,= 

*- -(P (in-1) P (in) ) (16) 
i-1 ij i il-1 

Remark that when F (i) is any function, I I F (i2) 2 F (i2). 
i=0 2=0 i1=O i2=0 

Then, from (11) and (12), 
Wt-1 il-1 i2-1 i.3 i2n-2-1 i2n-- 

fn (?) = ;Ez5 zp (i2) p (i4) * p ('2n) 2 (1-7) 
i4=O i2=0 i8=0 i4=0 t2n_l=0 i2n=0 

i1=O t2=0 t30 i=O i2,_1=0 i2n. ? 
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Apply summation by parts to (17) and (18), considering.as variables of 
summation i1, 3 . . . . i2n-1 and i2 7 .i4 . 2n-2 respectively. We arrive at 
the following formula: 

W-I qi-1 i2-1 in-:l-1I 

2 An z 2; 2; -1; ((1 + 6n) (q'12 - 
'2 

i1=0 i2=0 i3=0 in=0 

(',I-1 in) P ('0l P (is) *It@@ (n I (9) 

an alternative formula to (16). One draws the conclusion from it, as easily 
in various other ways, that if p (i) ?0 at all. points, An >0 

? 3. Fundamental Theorem. 

THEOREM II. If p (i) > 0 at all points, then, if An = 0, An+1 = i; if 

n= An <nf + I An_]1 

To prove the first conclusion of this theorem, we refer to (19). This 
formula can be written 

Aln = X (( - 'I + 'n) ('1 - 
i2) *-- (Mon--1 iwn) P ('Il) P (qJ2) * @@P (q'n) 

where Z denotes the sum of all possible products of the form expressed, 
ii . i2 2 . . in taken in every possible way from X-1, X-2, . .. ., 0, subject 
to the restrictions i1 > i2 > . . . . > in. (c - i1 + in) (i - i2) . (in-1 - n) 
is always positive. Hence, if An = 0, each product p (il) .... p (in) must be 
zero; that is, there do not exist n numbers of the set I - 1, ca - 2,., 0 
for which p *t 0. But An+I is the sum of products of the form 

((i) q' n+1qnr) (q'I -'2) *XXX(i'n 
- 

'n+l) P 1(') P (q'2) * XXP (inq+J)i 

'l 12 . ' ,n+i numbers of the set (-1, -2,., 0 and i1>i2> .... > n+1 

and hence is zero. 
For the second conclusion of the theorem we refer to (16). This can be 

written 

2 An =E2 (Ql- P(q) + P(Q n) (p ('1) - p('2)) (p(qn P (Q'n 

where E denotes the sum of all products of the form expressed, the letters 

ii I i2 I in, chosen in every possible way from the numbers X-1, ca-2,., 1, 0, 
subject to the restrictions i1 > i2 > i3 > * ' * * > in 

If we conceive of the numbers ()-1, --2, ., 1, 0 as equally spaced 
points on a circle of circumference o, in the expression 

(tf fc p (is + Pn(Q ) (P (ane dP (ir 2) f a other ( a'n-1) caP (Qb ) e 
the first factor is in no maiiner different fromn any other, and (16) can be written 
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where E denotes the sum of all possible products of tlle form expressed, 
ko , k . ..,k kIn =ks, being the numbers X-1, 1 -2a - . ..., 0 taken always in 
the same cyclic order, namely a -1, c-2, . ..., 0. For brevity we write 

2 An =, ODIi I .1D12 * * DIn 
Then 

4 A 2 
J:~;oDxl x1D OD~v, . ~vD ~v ,4. 9 (20) nA -}OA* 1X2 * X.@- 17Xn t }D 1* AlD2 * n_1gtS (0 

4 An-1 An?+ l = 5Dl * . D .2 * . -2Dv,, )iE 0DP1 * P1DP2* X PnDPn+I (21) 
where, instead of using only the letter 1, we use distinct letters, X, , v, p. 

We shall consider (20) and (21). Begin by supposing a1, a2 .... a2n 

naumbers of the 'succession X-1, ca-2, . , 0, and assume that among the a's 
there are exactly k distinct numbers, and that no number occurs mnore than 
twice among them. If k?>n+1, the product p(a,)p (a2) ....p(a2n) will occur 
in the expanded right-hand members of both (20) and (21). We shall show 
that the ratio of its coefficient in (20) to its coefficient in (21) is greater than 

-n+1 or equal to n n 
Omitting coefficients, let p (j) . ... p (In-) be a term of A,, and p (i1)j. 

p ('in+l) a term of An+1 such that p (il) * p9(j jn) p (i,) . ... p (in+i) is identical 
with p (a,) p (a2) .... p (a2n), and let p (i)....p(In) and p(i1) ... p(in) lbe 
terms of An such that P(hl) .... P (in) p (i1) .... p (in) is identical with 
p (a1) p (a2) * . p (a2.) We shall show that the ratio of the number of ways in 

which Ii.***, i .* in can be chosen to the numrber of ways in which 

i. * *** inI , il* , i can be chosen is greater than or equal to n + 1 n 
These numbers are exactly the coefficients of p(a,).... p (a2n) in (20) and (21) 
respectively. 

Require, first, that p(Ij), P(12) , P (in-1) be each the first term of one 
of the parentheses ,D., IPDV2, . - . , N-1. and that p( i), P(I2), .. P('n+l) 
be each the first term of one of the parentheses 0DP, PDP2 . . . .P ,pD Pn+1 Under 
this requirement the number of ways in which h, * * .* jn 2 il * . *. *n+1 can be 
chosen is the number of ways in which il. , In-i can be chosen from 
al, a2 ., a2 The 2 -k numbers which occur twice among a,, a2. 
a2n, necessarily occur among j,, i2 .. iw-l There remain k-n-1 of the j's 
which can be chosen arbitrarily from the renmaining 2k -2n numbers. Letting 

k -n = Nk, this can be done in 2Nk(2ATk-1) .. k +2) ways. Similarly, k 2 ~~~~(Nk-1-) 

the number of ways that I. , . ., n can be chosen, requiring that 

p (Aj] ) S . . ., P (in) be each the first term of one of the parentheses cDir. 
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xlun and p (i1)., p (i,) be each the first term of one of the parentheses 

OD . . i 2NTk(2Nk1).... (N-k+l . The second is larger in the /J,n-L /il IisNk! 

ratio Nk + 1 But Nkn, and hence Nk+11>n+1 
ratio Nk+_ Nk nfl 

We generalize as follows: Instead of requiring that each p be the first 
termn of a parenthesis, let us require that p (a1) be the X-th, p (a2) the t-th, . 

p (a2.) the <-th. For convenience we shall refer to J . *, j, and 1 - - 
as the sets J and to i1, . . . ., in+1 and i, *. .., It as the sets 1. As above, those 
a's occurring twice among a1, . ., a2 necessarily occur in both the sets J and I. 
Consider them as fixed. We proceed as before, choosing the remainder of the 
sets J. 

It may happen that the fact that am lies in the sets J (or 1) requires that 

a.+v lie in the corresponding sets I (or J). Thus, suppose that am is the p-th 
term of a parenthesis and am ^ the p-th, and suppose that p > v; then, if am is 
one of the set J, in order for p (am.+) to lie in a different parenthesis from 
p (am), as it must, it must necessarily be a member of the set I. Moreover, 
the fact that am lies in the set J can require that only one of the a's lie in the 
sets I; for, suppose that p (am+,) is the p-th term of a parenthesis and > y(v, 
then p (am?) and p (amf+,) belong to the sets I and lie in different parentheses. 
Hence, < y - v but =p > Iu, a contradiction. 

In the way that we. are choosing the sets J, let us suppose all p (a) Is that 
impose any restriction on others as fixed. Let this number be L. Then there 
are thereby fixed R in the sets I, and necessarily R ? L. The remaining a's 
can now be distributed in sets J and I at pleasure. This can be done in (21) 
and (20) in 

(2Nk-L-R) (2Nk-L-R-1) .... (Nk-R + 2) 
(Nk-L-1)! 

and 
(2Nk-L-R) (2Nk--L--R--1) .... (Nk - R + 1) 

(Nk- L) ! 

ways respectively. The second is the larger in the ratio Nk- R+1 which is 

greater than n +1. We thus conclude that the coefficient of p (a,)... . p 
(a2.) n 

in (20) is greater, than its coefficient in (21) by a ratio greater than or equal 

to n +1 
n 
We have considered In > n + 1, which exhausts the terms of (21). There 

are in addition in (20) terms of the form p (a1) ... . *p(a2f), where kc -n; that 
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is, terms of the form (p(a,). r p(a.,))22 These are not all zero as A.4 *0. 
All coefficients are positive, and hence we conclude 

2> n+lA n+An-1 

from which we immediately draw the desired conclusion 

An_ < 
n An (22) 

An n + 1 An<1 

From theorem II one readily proves the following: 

THEOREM III. If p (i) > 0 at all points, 
when - l+A2-A3+.... +A2n_0, A<l; 
when 2-A1 + A2 ** A2n-1 >0_ A >-1; 
when2 -A1+A2- ...+A2n<,0, A<-1; 
when -A1+ A2-A3+ ..* - A2n-1 _O, A > 1. 

? 4. T'he Calculation of A2 and A3. 

The problem now proposed is the calculation of A2, Ag, etc., with as little 
labor as possible. We retain the supposition p 0 O at all points. 

From (16), 
W-1 hL-1 w-1 w-1 

A2=W,Yoi (Qi (- iZ2 f 1 -y t c- i(p(i))2 
t1=O i2=2 i=O 

c-1 il-1 c-i i-1 c-1 i-1 

+ z z P(i1)P(i2)-jf Q E P(i2)- i (P(i2))2. 
i=0 i2=0 =O i=0 1=- $2=0 

This expression can be still farther reduced by summing by parts those terms 
in which two X's occur. We obtain 

ca-1 t~~-1 w-1 s2 _1 

A2 =n iP(i)-j _ (P(i))2 +(P P(i) )- I2 P(i). 
i=O 2 =o i=O i=O 

From this we easily verify the formula 

A2 = &2( ) 1 R, (23) 
2 ~ 24 

where 

R P ((i)n ) -[f z (P(i) - n t) (24) Rzz '2 rc-i V 

If a(i) is any real function, 
2-1 2 

Hee B ((a 2 use a a a s l 
i=0 j=0 
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or more loosely 24 . But from (16), Al - __ hence 

A2 < *Al. 
With this last result we can proceed as is done by Liapounoff (? 14), obtaining 
the same result as is obtained by him. 

i_1 
We have defined P (i) as E p (i), but we might equally well have defined 

i=O 

P(i) by the equation P(i) = p (i), where X denotes the indefinite sum, re- 
W1 

taining the notation Ql= E p (), since in the formula for A., (16), P (i) i=0 

occurs only in the combination (P (ij) P (ik)). Let us particularize P (i) 
by choosing the arbitrary constant of summation so that 

w_1 I a-1 
P(i) - 6- (25) i=o 2 

It is immediate that 
w-1 

2 (P (i) Q a j/) = , (26) 
j=o 

and we get as a simplified formula 
co-1 

R=) X p (P(i) _ n i./6)) 2. (27) 

(P (i) - I i/Q) has the period 6, since increasing i by X increases both terms 
of the expression by Q. The same thing is true of its sum; that is, 

i- E (P (i)-Q fl A) 

has the period F. For, if we increase i by &, we add 
i+&J-1 ce-1 

Y, (P (i) -. - i/0) =XY (P (i) - -l n/J)' = , 
i=i j=O 

by (26). 
Now let P (i) - ni/ = a 0 (i), where A 0 (i) denotes the first difference 

of a function 0. We have just shown that 0 has the period c. From (23) 
and (27), 

2~~~~~~~~~~(8 A2 =Q { 2 -ixa (Ao(i))2} (28) 

For brevity let i/J+A0(i)=Q(i); then (16) gives 
A= a,. fin" An -- an Q 

where 
w-1 i1-i l- an - i 

-X 2 (1 - *- ( Q (i)+Q (in))( (1 Q (i2) )***(Q (in-) Q (in))- 

n = 1z: i) + Q (t J) (Q (i-Qi))(Qi2 -Q(i )* 29 

0-1 t8=1 t8 

il= O i.2 O i3=O 
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It is possible to greatly simplify this expression. The summand reduces to 

Q 1) Q ('2) + Q ('2) Q (3) - Q ('1) Q (t,3) -(Q (i2) )2+(Q (3) - Q (i2) Qi ) 
+(Q(i) -Q(i3) ) (Q(i2))2(Q(i2)-Q(i1)) (Q3))2. 

Distribute the sign of summation and apply to each term summation by parts 
or perform obvious summation. We obtain the following results: 

co-1i t-1 t2-1 c-1 i1-1 

2 2 2 Q(i1)Q(i2) = 2 2 i2Q(i )Q(i2), 
i1=O i2=? t3O? t1=O t20? 

2 2 2 Q (i2) Q (i3) = 2 2 -iQ-i).Q(i1)Q(i2), 
t1=O i2=0 i3=0 i1=O i2=O 

Cu-1l-1 i2-1 W-1 l-1 

2 2 2 Q(i1)Q(i83) 2 2 (i -i2--1)Q(i1)Q(i2), 
t1=? t2=0 t3=O t1=O t2=O 

W-1 ti-1 i2-1 c-1 

2 2 E (Q(i2))2= (-i-1) i (Q(i))2, 
4=0 t20 t3=0 i=O 

W-1 il-1 i2-1 c-1 i1-i 

2 2 2 (Q(ij))2Q(i8) =2 2 (']-I -1)(Q(i))2Q(i2), 
l=? t2=0 i3=O t10 i2=0 

co-1 il1-1 i2-1 c-1 i -1 

2 2 2 (Q(i))2Q(i2)=2 2 i2(Q(i))2Q(i2), 
t1= i2=0 i3-O i1=? i2=? 

W-t1 il-1 *2-1 Cu-1 ij-1 

2 2 2 Q(i1) (Q(i2))2= 2 2W Q(i1) (Q(i2))2i2, 
t1=0 i2=0 i3=0 i =0 i2=o 

Wu-1 4i-1 i2-1 W-1 f, 1 

z z z (Q(i2t)2Q(i3) 2 2 (- i1-1) (Q(i))2Q(i2), 
i1=O t20? t3O ? =? t20 

2 2 2 Q(i2)Q(i8)2= 2 2 ((-il-1)Q(i)(Q(i2))2, 

t1=? *2=? i3==0t1O t2=O 
-1 i1-1 i2-1 c-1 i-1 z zQ(il) (Q(i3))2= 2 2 (1 -i2-i)Q(i)(Q(i2))2. 

i1=0 t2=0 t330 i1=O i2=0 

Collecting, 
W_1 ij-1 

a8 _j~ 2 [Q (i1) Q (i2) (') + 2 i2-2 i) +(Q(i))2Q(i2) (2 i12i2-d) 
t1=0 t2= w-1 

+Q(iD)(Q(i2))2(c +2i2-2i,)]-2 2 (_-i-1)i(Q(i))2. (30) 

By means of the formula for summation by parts, one proves easily: 
co-i i1i ,/o-i \2 co-1 

X z Q(i2)Q(i21\ 0 _ 2 ( - (Q(i))2, 
c=o i-2=- *\O i=- 

CA-1 2i-1 CA 1 w -1 \ C-1 ti 

22(Q(il))2 Q(i2) i22 

- 2 iQ i=)((2)- (()3 
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Similarly, 
co-i i1-1 / co- i \ c-i 

2 2 Q(i)(Q(i)2i(2(Q (i) )2)(2 () Q ('1) (Q ('2) )22 ( Q(Z 2 Q (i)) 
i1=0 i2=0 *=0 i=o 

Co-i i1-1 Co-1 

- 2 2 i1 (Q(il))2Q(i2)- 2i (Q(i))3. 
ij=0 i2=0 i=O 

Substituting these values in (30), 

a,i , c Q(t)) + '2 (i21) Q Q(i1) Q(i2) 
4 s=o 1=0 i2=0 

@-1 \ @-1 @~~~~-1 , - 

+ i Q( )Qi(iQ(i)(i)()- (Q co-i 
(i=o (Q ))i=o( )) i=O ( )i=o (() 

W-1 il-1 W-1 ~~2 (Q (i))2 + 2 I; 12 Q (ii) Q (i2) (Q ('2) Q ('1) ) - 2 Q t 
2 4=0o i2=0 1 i=o 

?~ z(Q (i))2 + j c o2 (Q (i) )2. (31) 
4 =O io= 

i 
Moreover, Q (i) = -+zO(i)= t + (P(i)-n ! ). Hence, by (26) 

--1t _ 1 
Q 

=oC-2) i=o i=o 2x 
Substituting in (31), 

a 
16I 

)2( + 2 2 (i 2 i) Q(i Q(2) 

i=o 0=o 

+ 6) Q 01)Q 02) (Q(i2) -Q(1)) -- (Q(i))2. (32) 
2 i1=o i2=0 4 j=o 

We have only defined the function 0 by its first difference. We can par- 
ticularize by letting 0 (0) = 0 (u) = 0. Under this assumption, the above 
expression for a3 permits of great silnplification. We treat the different sums 
occurring separately, applying summation by parts, collecting and simplifying, 
arriving at the following result: 

1 [04 +2 l1c (a2+ 2 )o- 

_ _ X 0~~~~~2 (t) (i0() ) 2 _ Y t+I @(0(' 
a. 2 +I+22() i (A 0(i))2 

(2)L72Ol4 44lS iO Ji 12 i=0 

- 20(i) (A 0(i) 20i1(i)i))2(33) 

We know that 
A3 = SI8 a3. (34) 

To obtain the actual formulas desired, we proceed thus: 

Q ^0 (t) 
P(i)-Q) i= 6)()- 

+C 
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where C is determined so that E P(i) - a_2_ 
i=O 2 

?2A20(i) p(i+l) 

Let QA2 0 (i) - A2p (i + 1), where A2q+.(i) denotes the second difference of 

a function p (i). Let f = c. Then A2 (+ ( + 1) =cA2 0 (i). Determine the 

arbitrary constants of summation so that A p(i + 1) -c aA 0 (i) and Cp(i + 1) 
-c 0 (i). Like A 0 (i) and A2 0 (i), Ap (i) and A2 (i) have the period c. 

i=k+w-1 

Bear in mind that, if f(i) has the period (, z f (i) is independe:nt of k, 
i=k 

and substitute in (16) for A1 and in (28) and (34) for A2 and A, respectively, 
using the value of a, given by (33): 

c 6)2 
Al = 2 '(35) 

-c2=62@ ~241 -X (c-i ()) (36) A2 F c 24 2 A + (Ap p (i)) , 
2 236 24 i==O 

A 8 c A 2 _ _2 _ __C 

(cw-1 cac-i 

We proceed by determining c = n, then A2 c (i) = p (i) -C i then 

Aqp (i) = X A2 q (i) , where that particular sum is chosen which will cause p (i) 
to be periodic. 

+p(i) = 2A i(i), determined so that q(1) = 0. 
Formulas (35), (36) and (37) are easily applicable when p is expressed 

as a trigonometric sum, which development is always, theoretically at least, 
possible. 
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